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The collapse of a spherical vapour cavity in the vicinity of a compliant boundary is 
examined numerically. The fluid is treated as a potential flow and a boundary- 
element method is used to  solve Laplace’s equation for the velocity potential. Full 
nonlinear boundary conditions are applied on the surface of the cavity. The 
compliant wall is modelled as a membrane with a spring foundation. At the interface 
between the fluid and the membrane, the pressure and vertical velocity in the flow 
are matched to the pressure and vertical velocity of the membrane using 1in.earized 
conditions. The results of calculations are presented which show the effect of the 
parameters describing the flow (the initial cavity size and position, the fluid density 
and the pressure driving the collapse) and the parameters describing the compliant 
wall (the mass per unit area, membrane tension, spring constant and coating radius) 
on the interaction between the two. When the wall is rigid, the collapse of the cavity 
is characterized by the formation of a re-entrant jet that is directed toward the wall. 
However, if the properties of the compliant wall are chosen properly, the collapse can 
be made to occur spherically, as if the cavity were in an infinite fluid, or with the re- 
entrant jet directed away from the wall, as if the cavity were adjacent to a free 
surface. This behaviour is in qualitative agreement with the experiments of Gibson 
& Blake (1982) and Shima, et al. (1989). Calculations of the transfer of energy 
between the flow and the coating are also presented. 

1. Introduction 
The growth and collapse of vapour cavities in the vicinity of plane boundaries has 

been the subject of a number of theoretical, numerical and experimental 
investigations (see the review article by Blake & Gibson 1987). When the boundary 
is a rigid wall, the collapse is characterized by the formation of a re-entrant jet that 
is directed toward the wall (Plesset & Chapman 1970; Chahine & Bovis 1983; Blake, 
Taib & Doherty 1986; Vogel, Lauterborn & Timm 1989). In  a recent experimental 
investigation, Tomita & Shima (1986) found that the erosion of wall material during 
the collapse was related to the behaviour of this re-entrant jet. When the plane 
boundary is a free surface, a re-entrant jet is also formed. However, in this case, the 
jet is directed away from the free surface (Chahine 1977; Blake & Gibson 1981; 
Dommermuth & Yue 1987). 

The laboratory investigations of Rheingans (1950) and Lichtman (1967) have 
indicated that surfaces coated with elastomeric materials are more resistant to 
cavitation erosion. Theorizing that this increased resistance to erosion might result 
from a redirection of the re-entrant jet in a manner similar to a free surface, Gibson 
& Blake (1982) photographed the collapse of spark-generated cavities in the vicinity 
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of walls covered by elastomeric coatings of several compositions. They found that 
under some circumstances the collapse was modified such that a jet was indeed 
directed away from the wall. To identify coating properties that would produce this 
redirection of the jet, they devised a simple non-interactive model. First, using data 
from the calculation of the collapse of a spherical cavity in an infinite fluid, they 
computed the average pressure force and average displacement in the fluid on an 
imaginary surface at the position where the wall would be located in the interactive 
case. Then, using a one-dimensional spring-mass-damper model of the coating, they 
found coating designs whose impedance matched the average force and average 
displacement characteristics in the spherical collapse. In  this way, they attempted to 
find the coating properties that would make the collapse spherical when the cavity 
was adjacent to the compliant wall. It was theorized that further softening of the 
wall properties would result in a re-entrant jet that was directed away from the wall. 
This analysis indicated a tentative beneficial parameter range for the coatings. A 
more detailed set of experiments with spark-generated bubbles adjacent to a 
compliant surface has been reported by Shima et al. (1989). The compliant surface 
consisted of a thin layer of rubber backed by a laycr of foam. The position and size 
of the cavity and the thickness of the rubber and foam layers were varied. The 
shape of the cavity was measured photographically. The results showed again that 
it is possible to redirect the re-entrant jet away from the wall with a properly 
designed compliant coating and gave detailed information on the history of the 
cavity shape. No measurements of the motion of the compliant surface were 
reported, 

The computational methods for the collapse of a cavity in the vicinity of a rigid 
wall (e.g. Blake et al. 1986) and a free surface (e.g. Blake. Taib & Doherty 1987) are 
well developed. In  these methods, the fluid motion is assumed to be inviscid and 
incompressible and the fluid velocity is obtained from the gradient of a scalar 
Eulerian velocity potential which satisfies Laplace’s equation. Fluid particles on the 
free surfaces are tracked in time and Bernoulli’s equation is used to obtain the 
velocity potential a t  the position of these particles. At each time step, an integral 
equation is solved to obtain the value of the fluid velocity in the direction normal to 
the surfaces. The rigid surface is usually simulated with an image cavity. 

In the present paper, the collapse of a cavity near a compliant wall is explored 
numerically. In  particular, the above-mentioned potential flow model for the fluid 
motion has been coupled to  a rigid wall with a central region containing a compliant 
coating modelled as a spring-backed membrane. This coating is characterized by its 
mass per unit area (m) ,  membrane tension ( T ) ,  spring stiffness per unit area (K)  and 
radius (Rm). The coating is coupled to the flow model through the normal velocity 
and the pressure at the flow-coating interface. Linearized boundary conditions are 
applied at  the location of the undisturbed membrane surface. A detailed account of 
the theory behind this fully interactive model is given in $2  and its numerical 
implementation is described in $3.  Calculations are presented in $4 which show the 
effect of the coating and cavity characteristics on the collapse. It is also noted in 54 
that this model is not a good representation of the experiments of Shima et al. (1989). 
However, some comparisons with their data are included which show qualitative 
agreement. The conclusions of the work are given in $5.  
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2. Mathematical formulation 
A schematic showing the initial position of the cavity, the wall and the coordinate 

system used in the calculations is given in figure 1.  The coordinate system is 
cylindrical with the z-axis piercing the centre of the cavity and directed normal to 
the undisturbed surface of the wall which is located a t  z = 0. The radial coordinate 
is r and the circumferential angle is 8. The compliant surface is centred a t  r = 0 and 
has a radius R,; outside this region the wall is rigid. The problem is axisymmetric 
about the z-axis. The cavity is initially ( t  = 0) spherical with radius R,, its maximum 
value, and its centre is located a t  z = 2,. For times before the initial instant, the 
pressure everywhere in the fluid and inside the cavity is P,. At t = 0, the pressure in 
thc cavity is reduced to Po and is held constant a t  this value for the entire collapse. 
The pressure in the fluid far from the cavity is maintained constant at P,. The 
theoretical model for the fluid is similar to the one used by a number of investigators 
including, most recently, Blake et al. (1986). The fluid motion is assumed to  be 
incompressible and inviscid and therefore satisfies Laplace's equation : 

v2g5 = 0, (1) 

where V is the gradient operator and g5 is the velocity potential. The fluid velocity 
is equal to the gradient of the velocity potential, u = Wg5. On the surface of the cavity, 
the pressure in the fluid is equal to the pressure in the cavity, Po. The condition 
imposed on g5 by this dynamic boundary condition can be written as Bernoulli's 
equation in material derivative form : 

where D/Dt  is the derivative with respect to time following a fluid particle. The 
kinematic boundary condition on the surface of the cavity states that material points 
remain on the surface of the cavity: 

Dx, = Vg5, 
Dt (3) 

where x, is the position vector to these material points. 
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For r < R,, the wall is modelled as a spring-backed membrane with mass pcr unit 
area m, spring constant K and tension T. For r > R,, the wall is rigid. The equation 
describing the motion of the compliant section of thc wall is 

+Ky = - ( f k ( r , t ) - P m ) .  (4) 

wherc 7 = q ( r ,  t )  is the vertical displacement of the mcmbrane surface and P, is the 
pressure on the membrane surface. For t < 0, the springs are compressed uniformly 
owing to the steady, uniform pressure, P*, applied by the fluid. The displacement of 
the membrane a t  this time is taken as zero. The membrane is assumed to be attached 
to the rigid boundary at r = R, so the vertical displacements a t  this point are taken 
as zero. r(R,,t) = 0. During the collapse, the fluid and the membrane are coupled 
using linearized equations for the pressure and velocity in the two systems. These 
equations are satisfied at  the undisturbed position of the coating surface z = 0 :  

_ -  aq5 a7 
at az - w(r,O,t)  = -, 

(6) aq5 Pm(r, t )  = P ( r ;  0, t )  = -p-+P,, 
at 

where the last equation is the linearized Bernoulli equation. 
To show how the system of equations can be advanced in time, let us assume that 

a t  time ti all dependent variables are known. The boundary conditions on the surface 
of the cavity, equations (2) and (3), are integrated numerically to get the position of 
the surface of the cavity and the value of 4 on the cavity a t  time t i+l .  The membrane 
equation can be used to obtain the value of ar /a t  = -aq5/an on the membrane surface 
at  t ,+ l .  On the rigid part of the wall, &$/an = 0. In order to move on to the next time 
step, t,,,, the values of Vq5 must be known on the cavity surface for use in (2) and (3). 
However, a t  this point only the value of aq5/as can be computed (where 5 is a 
coordinate along the cavity surface). Also, in order to find the value of aq5/an on the 
membrane surface at  t,,,, the pressure must be known on the membrane surface a t  
ti+l for use in (4). The pressure a t  ti+l can be obtained from Bernoulli’s equation if 
aq5/at is known, (6). Thus, the value of q5 on the membrane at  time ti+l must be found 
to obtain a finite-difference approximation for a+/at. To complete the problem, the 
values of a$/an, on the cavity surface and q5 on the membrane surface are obtained 
by solving Laplace’s equation in the form of an integral equation (Lamb 1945) : 

where S, is the surface of the cavity, S, is the interface between the wall and the 
fluid, p is a field point that is on the surface S = S,+S,, q is a source point that 
is also on S, g@,q) = l / lp-qJ,  n is the normal to S directed outward from the fluid 
and dS, is the area element of S varying the point q.  Since the problem is 
axisymmetric, the positions of the field points need only be considered in a single 
plane, 8 = 0. Once this equation is solved, the calculation can proceed on to the next 
time step or, with a companion form of this integral equation, the velocity and 
pressure can be found a t  any point in the fluid. 
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The computation of the energy of the flow and the coating is useful for interpreting 
the physics of the phenomenon. The integral energy equation for the flow is obtained 
by integrating the mechanical encrgy equation 

3f+V.[($q2+$)*] at = 0 

over a volume bounded by the surface of the cavity ( L S ' ~ ) ,  a hemispherical material 
surface (8,) centred on ( r ,  z )  = ( 0 , O )  with a large but finite radius, and the surface of 
the wall (S, = Sm+9,, where S ,  is the membrane surface and S, is the surface of the 
rigid wall). After performing the integrations and using the divergence theorem and 
the transport, theorem, this equation can be written : 

where q is the magnitude of the fluid velocity, V, is the total volume inside the 
surfaces, thc P are the pressures on the surfaces denoted by the subscripts, li is the 
outward unit normal to  the surfaces and the condition u-ti = 0 has been used on the 
rigid part of the wall. The pressure on the surface of the cavity has been taken as Po. 
When the radius of the hemispherical surface becomes large, the pressure Ph 

approaches P,. I n  this case, the conservation of mass in integral form, 

Jsc U. ti dx+ Jsm U. ti dS+ Jsh U -  ti dS = 0, 

can be used to eliminate the integral over the hemisphere. Thus, the energy equation 
can be written 

Finally, this equation is integrated in time to yield 

where V, is the volume of the cavity. The first term on the left-hand side is the kinetic 
energy of the fluid (KEF) and can be obtained from surface integrals over the cavity 
and the wall: 

(Lamb 1945). The second term on the left-hand side of (12) is the potential energy 
(PEF) associated with work against the pressure a t  infinity as the volume of the 
cavity changes. The third term on the left-hand side is the pressure work term a t  the 
flow-membrane boundary (PW). In  the following, this term is evaluated at  z = 0. The 
pressure work term represents the transfer of energy between the flow and the 
coating. The sum of these three terms equals the initial potential energy which 
appears on the right-hand side. 

The energy equation for the coating is obtained by multiplying the membrane 
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equation by the membrane velocity and integrating over the surface of the 
membrane. Thus, one obtains 

a7 
= at 

(P, - P,) - 2nr dr dt. (14) 

The first term on the left-hand side is the kinetic energy of the membrane (KEM). 
The next two terms are the potential energies in the tension (PET) and the spring 
backing (PES). The right-hand side is the pressure work. It is identical to the 
pressure work in the fluid energy equation (12) when it is applied a t  z = 0 and the 
kinematic boundary condition ( 5 )  is used. 

3. Numerical implementation 
In the numerical model, the surface of the cavity is approximated by a set of 

panels each of which is obtained by rotating a straight line in the 8 = 0 plane about 
the z-axis (see figure 2). The cavity is composed of n, of these panels. The flat 
interface between the fluid and the wall a t  z = 0 is modelled by a set of n, panels 
consisting of n, membrane panels with equal length and n,-n, rigid wall panels 
with non-equal length. Field points (nodes) are taken a t  the positions where the line 
of intersection of two adjacent panels pierces the 6 = 0 plane. A predictor-corrector 
scheme sometimes referred to as Heun's method (see Ferziger 1981) is used to 
integrate the boundary conditions on the cavity and the membrane equation in time. 
The r- and z-coordinates of the nodes on the cavity and the corresponding values of 
@ a t  ti+l are expressed in a vector form as: 
Predictor step : 

Corrector step : 

where the superscript refers to the nodes and the subscript refers to the time step. 
The value of IV$l is computed from the derivative of 4 in the direction normal to the 
cavity surface, which is obtained from the solution of the integral equation, and the 
derivative in the direction tangent to the surface, which is obtained from a central- 
difference scheme. 

The membrane equation (4) is decomposed into two first-order differential 
equations with respect to time : 

= 5, - 87 
at 
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FIGURE 2. Nodes and panels on the surface of the cavity and the flow-wall interface. 

The application of the predictor-corrector scheme to these equations yields : 
Predictor step : 

where 

and 

In the above equation, Ar is the radial distance between nodes on the membrane and 
the boundary conditions ar/ar = 0 a t  r = 0 and q = 0 a t  r = R ,  have been used. The 
former boundary condition is a consequence of symmetry, while the latter boundary 
condition is a consequence of the attachment of the membrane to the rigid boundary 
a t  r = R,. The reflected waves that are introduced by this attachment are caused by 
physical processes rather than numerical inaccuracies. 

The numerical forms of the boundary conditions at the flow-membrane interface, 
( 5 )  and (6), are 
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In the numerical solution of the integral equation (7) ,  the values of # and a#/& 
are assumed to vary linearly in the 8 = 0 plane as the source point is varied along 
each panel. The integral equation in its discrete form can be written 

where N = n, + n, and 

In these equations, the length of panel j in the 0 = 0 plane is given by hi, and P is 
the distance coordinate along the panel. The parameter ai is the solid angle within 
the fluid subtended by the fluid surface at  node i. On the flow-wall interface, which 
is taken at z = 0, a tangent plane to the panelled surface exists a t  each node and 
a, = 2x as it would on a continuous surface. However, for the nodes on the cavity 
surface, there is no tangent plane and ai f 2 ~ .  The integrations in the &direction 
were carried out analytically following the method of Jaswon & Symm (1977)  ; results 
in terms of elliptic integrals were obtained. The integrations in l j  were carried out 
numerically using Gauss-Legendre quadrature techniques for the regular parts of the 
integrals and the quadrature methods of Anderson (1965) for the singular parts of the 
integrals. 

Starting the calculations has turned out to be rather difficult. The problem lies in 
computing the value of the pressure on the membrane at  t = 0. From the linearized 
form of Bernoulli’s equation (22), the computation of the pressure on the membrane 
requires the value of $ at the beginning and end of a time step. From the integral 
equation, q5 = 0 on the membrane at t = 0 since the values of # on the cavity and 
a#/an on the membrane are both zero. In  proceeding to time At to obtain the 
required values of q5 on the membrane, the position of the nodes on the cavity and 
the corresponding values of # are obtained from (15) or (16) .  In  order to get # on the 
membrane surface, the value of a#/an must be known there so that the integral 
equation (23) can be solved. However, a#/an is computed from thc membrane 
velocity and this value requires the pressure on the membrane at  t = 0. 
Unfortunately, this pressure is the quantity that was being sought in the first place. 
An iterative scheme was devised to overcome this problem. On the first iteration. the 
pressure on z = 0 at  t = 0 is computed assuming the coating to be rigid. This allows 
for the computation of an approximate value of a$/&, on the membrane at t = At.  
The calculation then proceeds for a few time steps with a rclatively stiff compliant 
boundary. The pressure on the wall soon settles down to a distribution that is nearly 
constant in time. At this point, the calculation is restarted with the equilibrated 
pressure distribution and a softer wall. This procedure is repeated until the desired 
coating properties arc achieved. It should be noted that this method can not be used 
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to start the calculation with a growing cavity which will later reach a maximum size 
and then collapse. The reason for this restriction is that the method requires the 
pressure distribution on the wall to be nearly constant during the first ten or so time 
steps of the calculation. If the cavity collapses from rest a t  its maximum size, the 
pressure distribution on the wall has this property (see $4). However, if the cavity 
is initially growing from a small size, the pressure distribution will change rapidly in 
the initial part of the calculation and the method will not work. 

In  the calculations described in the following section, the cavity is represented by 
32 panels which are of equal arc in the 0 = 0 plane at the beginning of the calculation 
when the cavity is spherical. The number of panels on the flow-wall interface 
depends on the radius of the compliant coating. The nodes on the part of the 
boundary containing the coating are spaced a t  equal intervals of 0.05R, starting 
at r = 0. The length of the panels on the rigid portion of the wall increases linearly 
from O . O 5 R ,  adjacent to the compliant section to a maximum value with the last node 
at r = 100R,. Fifty panels were used to represent this rigid part of the wall. Thus, for 
example, in the calculations with R ,  = 2.5R0 there were a total of 100 panels on the 
flow-wall interface (50 on the compliant part of the wall and 50 on the rigid part of 
the wall). The number and distribution of panels on the cavity and the wall was 
chosen by performing a set of calculations holding the dimensionless parameters of 
the problem constant and increasing the number of panels on the cavity and the 
number and maximum radius of the wall panels until the calculation converged. 

The time step of the calculation varied during each run starting with an initial 
value in most cases of At, = 0.005q (where !Po is defined below) and ending with a 
value greater than or equal to Atmin = At,/200. At each step, the time difference 

Atv = A@max 
1 + 0.5qkaX 

was computed, where A@max is a constant and qmax is the maximum fluid velocity on 
the surface of the cavity a t  any time step. If Atmin < Atv < At, then Atv was used as 
the time step. If At, > At, the time step was taken as At,, while if At, < Atmin the time 
step was taken as Atmin. 

4. Results 
There are a number of independent variables in this solid-fluid interaction 

problem. For the fluid, these variables include the initial radius of the cavity, R,, the 
initial distance of the cavity from the wall, Z, ,  the pressure difference, AF' = P, - Po, 
and the density of the fluid, p. For the coating, the variables are the mass per unit 
area, m, the tension, T, the spring constant, K ,  and the radius of the coating, R,. One 
of the most interesting parameters describing the collapse of the cavity is z,, the 
height above the wall where the north and south poles of the cavity meet at the end 
of the collapse. Thus, z, is a function of eight independent variables. In terms of 
dimensionless variables, we find 

For ease of reference, we define the last three dimensionless variables on the right- 
hand side of (24 )  as M*, K*,  and T*, respectively. The first, M*, is the ratio of the 
mass per unit area of the membrane to an equivalent mass per unit area of the fluid 
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based on a thickness R,. The last two, K* and T*, are the ratio of the spring and 
tension terms in the membrane equation to the pressure driving the collapse. The 
time for the collapse of a cavity in an infinite fluid is 0.9157:, where ‘r, = 
R,[p/(P, -Po)];. Thus, the timescale for the flow is taken as To. Note that if T, is used 
for the timescale in the membrane equation, M* is the ratio of the inertial term in the 
membrane equation to the pressure difference driving the collapse. Other physically 
int,eresting dimensionless ratios can be obtained by comparing the timescale of the 
flow to the timescale of the coating. The timescale for the coating can be obtained by 
HankelLLaplaoc transform techniques applied to (4) in the absence of the flow. From 
this analysis, one finds that 

(g)’=&y+j&). T* A ,  K* 1 

where T, is one-half the period of free oscillations for the coating and A ,  ( n  = 1,2, 
3 , .  . .) are the zeros of the zeroth-order Bessel function. In most of the calculations 
presented herein, the value of T* is quite small so one would expect the spring-mass 
term, K*/M*, to  dominate the ratio of the flow timescale to the coating timescale for 
the lower modes. I n  the following, all lengths and times are non-dimensionalized by 
R, and To respectively, and the dimensionless time is denoted by t* .  

In  performing the calculations, two modes of instability wcre found. The first 
occurs if the tension is too large and can be stabilized by reducing the time step. For 
instance, with T* = 0.25, 2, = 1.5R0, R ,  = 3.5R0, M* = 1.5 and K* = 2.0 the 
calculation was stable with an initial time step of 0.005; however, while when T* was 
increased to 2.5 while holding the other parameters constant, the time step had to be 
reduced to 0.0025 to obtain stable results. This instability appeared as an oscillation 
in the membrane surface with high spatial frequency that starts near r = R, and 
spreads inward. It is suspected that this instability is related to the instabilities 
generally found in the solution to hyperbolic equations like the one describing the 
coating. The second instability occurs when the mass of the membrane is too low or 
the membrane radius is too large. For instance, for R, greater than about 3.75&, it 
was not possible to obtain a stable calculation with M* low enough to make the 
collapse spherical. This instability manifested itself as an inability to converge to a 
stable pressure distribution to start the calculation. 

4.1. The general behuviour of the cavity and the coating 

The cavity profiles, wall pressure profiles and wall velocity profiles a t  various times 
during the collapse of a cavity next to four different walls are presented first to give 
the reader an overview of the phenomenon. The profiles of the cavity a t  various times 
for the four cases are presented in figure 3. In all cases, 2, = 1.5R0. Figure 3 ( a )  
depicts the collapse of the cavity next to a rigid wall, while in figures 3 ( b ) ,  3 ( c ) ,  and 
3 ( d )  the wall has a central compliant section with the properties R, = 2.5R0 and 
T* = 0.0025. In all of these latter cases, M* and K* are equal, with values of 3.5, 2.0 
and 1 .0 in figures 3 ( b ) ,  3 (c) and 3 (d ) ,  respectively. The cavity shapes shown here are 
typical of all the calculations presented in this paper. I n  the case of the rigid wall, 
figure 3 ( a ) ,  the typical wall-directed, reentrant jet can be seen in the profiles near 
the end of the collapse. The final collapse height, z,, is 1.026R0 and the total collapse 
time, t ,  (the value of t when the north pole and the south pole of the cavity meet), 
is 1.033q. This can be compared to z ,  = 1.5R0 and t ,  = 0.915T0 for a cavity collapsing 
spherically in an infinite fluid. It should be noted that z ,  and t ,  were obtained by 
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FIGURE 3. Cavity profiles at various times for four cases with 2, = 1.5R0: (a) Rigid wall; (b )  M* = 
3.5, K* = 3.5, T* = 0.0025, R ,  = 2.5R0; ( c )  M* = 2.0, K* = 2.0, T* = 0.0025, R ,  = 2.5R0; (d )  

M* = 1.0, K* = 1.0, T* = 0.0025, R ,  = 2.5R0. 

linear extrapolation from the point in the collapse where the north and south poles 
were about 0.006R0 apart. This extrapolation is necessary since the calculation of the 
Green's functions becomes inaccurate when the upper panels get too close to the 
lower panels. For the case with M* = K* = 3.5 (figure 3b) ,  the interaction with the 
relatively stiff compliant wall has modified the collapse so that the collapse height, 
z, = 1.311R0, and collapse time, t ,  = 0.955T,, are closer to the values for a spherical 
collapse in an infinite fluid. When M* and K* are reduced to 2.0 (figure 3c) ,  all the 
cavity profiles are nearly spherical and the values of z, and t, (1.552B0 and 0.924T,, 
respectively) are very close to their values for the collapse of a cavity in an infinite 
fluid. It should be noted that in cases of nearly spherical collapse, the calculation 
becomes unstable near the end of the collapse so z, and t,  are a little more speculative 
than in the other calculations. The profiles shown in figure 344 are for M* = K* = 
1.0. In this case, the jet can be seen directed away from the wall in the final stages 
of the collapse with z, = 1.740R0 and t ,  = O . S S S T , .  

The distributions of the pressure (P,-P,) on the wall during the collapse 
corresponding to figure 3(a-d)  are shown in figure 4(u-d) ,  respectively. The time of 
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FIQURE 4. Pressure profiles on the wall a t  times and conditions corresponding to figure 3. 
In ( b ) ,  (c) and ( d )  the values of curve 8 have been divided by 20. 

each distribution corresponds to the time of each profile in figure 3. (Note that in 
distributions number 8 for figures 4 ( b ) ,  4(c )  and 4(d), the pressures have been divided 
by a factor of 20.) In  each distribution, the pressure is a maximum at r = 0 and tends 
to zero as r tends to infinity. In the compliant-wall cases, there are wiggles in the 
pressure distributions near the boundary between the rigid and compliant parts of 
the wall. The pressure a t  r = 0 starts with a value ranging from -0.922AP for the 
rigid wall (figure 4a) to -0.565AP for the most compliant wall (figure 4 4 .  Toward 
the end of the collapse, this pressure becomes positive and has a much larger 
magnitude in figure 4(a-c). However, in figure 4(d), the case in which the re-entrant 
jet is directed away from the wall, the pressures a t  the end of the collapse are 
negative. It is dangerous to  make detailed comparisons of the magnitudes of the 
pressure profiles in figure 4 a t  the end of the collapse from one case to another because 
the pressure is changing very rapidly a t  this time. This comparison will be addressed 
later by plotting the pressure in a different manner. 

The vertical velocity profiles on the wall corresponding to  the four cases shown in 
figure 3 are presented in figure 5. The vertical velocity on the rigid part of the 
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the wall at times and conditions corresponding to  
&&re 3;  (a) is a one-way interaction. 

boundary is, of course, zero. In figurc S(a) ,  the pressure from the rigid-wall 
calculation was used to drive a compliant wall with the same properties as the one 
in figure 5(c ) .  This was a one-way interaction; the motion of the wall did not affect 
the collapse of the cavity. The velocity distributions in the four cases are similar. At 
times early in the collapse, the distributions are all positive since the pressures are 
negative. A maximum can be seen a t  r = 0 and near the outer edge of the compliant 
wall the velocity decreases to zero rapidly. At later times, the velocity decreases in 
magnitude. From figure 5 ( b d ) ,  it can be seen that the velocities generally increase 
with the softness of the coating (decreasing M* and K * ) .  The largest velocities occur 
during the one-way interaction case in figure 5 ( a ) .  

4 .2 .  The effect of M* and K* 
Let us now consider the effect of M* and K* as they are varied independently with 
fixed T* = 0.0025, 2, = 1.5R0 and R ,  = 2.5R0. Figure 6 contains plots of the height 
of the north pole and south pole of the cavity versus time. There are three plots, each 
with a set of calculations with the same value of K* : 0.25, 2.0 and 8.0 in figure 6 ( a ) ,  
6(6)  and 6 ( c ) ,  respectively. Each curvc is for a different value ofM* and these values 
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FIGURE 6. Height of the north and south poles of the cavity versus time. 2, = 1.5R0, R ,  = 2.5R,, 
T* = 0.0025: (a) K* = 0.25; ( b )  K* = 2.0; ( c )  K* = 8.0. M* = 1.0 (-), M* = 1.5 ( . . . . . I ,  M* = 2.0 
(._-____) , &f * - - 3 , 0 (--), M* = 5.0 (-*-.-.), M* = 10.0 (.-.- 1. 

are the same in each figure : 1.0, 1.5, 2.0, 3.0, 5.0 and 10.0. The short horizontal lines 
at  the end of each collapse indicate the projected values of 2,. Note that for each 
value of K*,  as M* is reduced (i.e. as the inertia of the membrane is reduced relative 
to R,p) the collapse becomes nearly spherical, z, x Z,,  and then for even smaller 
values of M*, z, > 2, indicating that the re-entrant jet is directed away from the 
wall. Thus, it appears that it is possible, given a wall with sufficiently low mass, to 
redirect the re-entrant jet over a wide range of values of the spring constant. To 
summarize these data, a plot of z, and t, versus M* for the three values of K* from 
figure 6 is given in figure 7. In all cases, the collapse height increases and the collapse 
time decreases with decreasing M*. The value of M* required to cause a spherical 
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FIGURE 8. Pressure on the membrane surface at r = 0 versus vertical separation between the north 
and south poles of the cavity. 2, = 1.5R0, R, = 2.5R0, T* = 0.0025: (a )  K* = 0.25; ( b )  K* = 2.0; 
(c) K* = 8.0. N* = 1.0 (-), M* = 1.5 (**...), M* = 2.0 (-----), M* = 3.0 (--), M* = 5.0 
(-.-.-.- ), M* = 10.0 (.-.- ). 

collapse, z, = 1.5R0, decreases as K* is increased. It is interesting to examine the 
timescale ratio, Trn/%, from (25) when the collapse is spherical for the three values 
of K*.  The required values ofM* were obtained from linear interpolation of the curve 
of collapse height versus M* for each of the three cases. For the lowest mode ( A ,  = 
2.405), the term in (25) involving T* is very small relative to the spring-mass term. 
Thus, using T,/T, = n(M*/K*)$, we find Trn/T, = 9.77, 3.34 and 1.32 for K* = 0.25, 
2.0 and 8.0, respectively, From these data, it appears that spherical collapse can 
occur for a fairly wide range of the timescale ratio. This indicates that the ratio of 
the timescales does not dominate the physics of the interaction. The values of t, for 
spherical collapse were 0.930T,, 0.930T, and 0.923% for K* = 0.25, 2.0 and 8.0, 
respectively. These collapse times are fairly close to the time for collapse in an infinite 
fluid, 0.915%. 

The pressures on the compliant wall directly under the south pole of the cavity, 
r = 0, are shown in figure ~ ( u - c )  for the set of collapses from figure 6. At the end of 
the collapse, the pressure increases very rapidly so it was found convenient to plot 
the pressure versus the distance between the north and south poles of the cavity. 
This expands the horizontal scale on the plots toward the end of the collapse and 
creates a basis to compare the pressures at similar stages during the process. For all 
the cases shown, the pressure is initially constant with a value greater than - 1 .OW. 
For the membranes with larger M*, the pressure on the wall then rises slowly, and 
finally rises rapidly at the end of the collapse. This rapid pressure increase occurs a t  
a larger value of the distance between the poles as the value ofM* is decreased. When 
the collapse is nearly spherical, the rapid pressure rise occurs at  the largest separation 
of the poles. The pressure profile shows a dramatic change when M* is small enough 
to produce a collapse directed away from the wall : toward the end of the collapse (at 
pole separations that are less than those at  the rapid pressure rise in the spherical 
cases) the pressure reaches a maximum and then decreases rapidly. The maximum 
positive pressure during the collapse is hard to measure in the cases where it is 
increasing rapidly toward the end. However, it can be said that as the wall becomes 
softer, this maximum pressure first increases, probably reaching a maximum value 
when the collapse is spherical. 
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In  figure 9, the vertical velocity of thc membrane a t  the position r = 0 is plotted 
versus time for the same conditions as in figure 6. In all cases, the velocity reaches 
a positive peak somewhere in the latter half of the collapse and then decreases toward 
the end of the collapse, in some cases finally becoming negative. The time a t  which 
the maximum velocity occurs decreases with decreasing M* for all three values of K*. 
For K* = 2.0, the time for the maximum velocity varies from 0.81; at M* = 10.0 to 
0.65T, at M* = 1.0. Thus, the time of the maximum velocity has decreased by a 
factor of 0.81, while T,/T, has decreased by a factor of 0.316. Similar results can be 
obtained for K* = 0.25 and 8.0. Thus. the effect of the timescale ratio is not as strong 
as one might have expected initially. 

The vertical displacement of the membrane a t  r = 0 can, of course, be obtained 
from the integral of the curves in figure 9. By examining figure 9, one can deduce that 
the curves of displacement will increase during most of the collapse and then level off 
or in a few cases start to decrease just before the end of the collapse. For M *  = 1.0, 
the maximum displacements are 0.162R0, 0.153R0 and 0.122R0 for K* = 0.25,2.0 and 
8.0, respectively. 

The physics of the interaction can be examined a little more closely by considering 
the balance of the terms in the membrane equation during the collapse. Figure 
lO(a-c) contains plots of the inertia term and the spring term in the membrane 
equation versus time for the cases with M* = 1.0 in figure 6(a-c), respectively. The 
tension term is not plotted since the low value of T* ( =  0.0025) renders i t  
insignificant. In  all three cases, the re-entrant jet is directed away from the wall. The 
three plots are qualitatively similar. At early times, the inertia term is larger than 
the spring term since the displacements are small. Somewhere toward the middle of 
the collapse the two terms are about equal. Finally, toward the end of the collapse 
the inertia term decreases rapidly and reaches large negative values, while the spring 
term is relatively constant with a value about equal to  the initial value of the inertia 
term. Thus, over most of the collapse the inertia term dominates the spring term in 
the membrane response equation. The values of M* when the collapse is nearly 
spherical are 2.42, 2.25 and 1.41 for K* = 0.25, 2.0 and 8.0, respectively. The rather 
small variation inM* compared to  the variation in K* is a reflection of the dominance 
of the inertia term in the interaction. 
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FIGURE 1 1 .  Energies of the flow and the coating versus time. 2, = 1.5R0, R, = 2.5R0, M* = 1.0, 
T* = 0.0025: (a )  K* = 0.25, ( b )  K* = 2.0, (c) K* = 8.0. Sum of all energies -, KEF (------), 
PEF ( . - . . . I ,  KEM (-.--.), PES (.-.-.-.- ), PW (---). 

Plots of the kinetic (KEF) and potential (PEP) energies of the flow, the kinetic 
energy of the membrane (KEM), the potential energy of the spring (PES) and the 
work done at  the flow-coating boundary (PW) are plotted versus time in figure 
11 (a-c) for the three cases from figure 10 (u-c), respectively. Each plot consists of two 
parts : in the upper part the flow energies, the pressure work and the sum of the three 
are shown; in the lower part, on an expanded scale, the two energies of the coating 
are shown. The total energy of the calculation should remain constant and was found 
never to vary by more than 0.5%. In all cases, the system starts with PEF = 1.0 and 
values of zero for all the other energies. As the collapse proceeds, PEF drops while 
KEF and the total energy in the coating increase. The total energy in the coating is 
never more than about 10 YO of the total energy of the flow-coating system. For the 
case with K* = 0.25, the energy in the coating is almost all in the kinetic energy. In 
the case with K* = 2.0, the coating energy is also dominated by the kinetic energy 
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FIQURE 12. Distributions of vertical velocity on the wall at various times for 2, = 1.5R,, 

R ,  = 2.5R,, M* = 1.5 and K* = 2.0. (a )  T* = 0.025, ( b )  T* = 0.25 and ( c )  T* = 2.5. 

term but the energy in the spring is visible in the plot. I n  the case with K* = 8.0, the 
coating energy is dominated by the spring during the last half of the collapse. 

4.3. The ejject of T* 
In all of the results presented previously, the small value of the membrane tension, 
T* = 0.0025, has rendered the influence of this effect negligible. In order to explore 
the influence of the membrane tension, a set of calculations were performed with 
Z,  = 1.5R0, M* = 1.5, K* = 2.0, R, = 2.5R0 and three values of T*: 0.025, 0.25 and 
2.5. The profiles of the cavity versus time are very similar and therefore are not shown 
here. The collapse heights were 1.656R0, 1.652R0 and 1.622R0 for T* = 0.025, 0.25 
and 2.5, respectively. The distributions of vertical velocity on the wall at various 
times during the collapse are shown in figure 12 for the three values of T*. The most 
prominent effect of the tension is in the region near the outer edge of the compliant 
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surface. When the tension is very small (see figure 5 ) ,  the velocity of the membrane 
is nearly constant near the edge of membrane and suddenly drops to zero at  r = R,. 
When the tension is larger, regions of negative velocity near the edge of the coating 
develop toward the end of the collapse. The width of these regions increases as the 
tension is increased. This is consistent with the higher resistance to membrane 
curvature in the calculations with higher tension. It is emphasized, however, that in 
the range of parameters used herein, the tension played a much less dramatic role 
than M* and K* in controlling the dynamics of the cavity-coating interaction. 

4.4. The eSfect of the initial height of the cavity and the radius of the coating 

The geometrical aspects of the problem are described by the ratio of the initial height 
of the centre of the cavity to its initial radius, Z,/R,, and the ratio of the radius of 
the coating to the initial radius of the cavity, R,/R,. The effect of Z,/R, on the 
cavity-coating interaction is summarized by the plots of collapse height versus M* 
in figure 13. Three plots are shown for Z,/R, = 1.1, 1.5 and 2.0 in figure 13(a-c), 
respectively. In each plot, curves are given for six values of K*.  The qualitative 
behaviour of all the curves is the same: as M* is decreased the collapse height 
increases. Since the minimum value of 2, occurs for a rigid wall, it appears that, for 
a given M*, the higher the value of K*,  the closer the collapse is to the rigid-wall case. 
To further reduce the data, the curves in figure 13 were interpolated linearly to 
obtain curves of 2, = 2, on a plot ofM* versus K* for each value of Z,, figure 14. The 
curves look a little scattered owing to the previously mentioned instabilities when 
t h e  collapse is nearly spherical. For each curve, the re-entrant jet is directed toward 
the wall if the values of M* and K* are outside the curve and away from the wall if 
the values are inside the curve. For a given K*, the closer the cavity is to the wall, 
the lower the value of M* that is needed for a spherical collapse. 

The effect of the coating radius on the collapse is illustrated by figure 15 which is 
a plot of z, versus M* for fixed 2, = 1.5R0, K* = 2.0 and T* = 0.0025 and three 
different values of R,/Ro (1.25, 2.5 and 3.75).  The results for R ,  = 2.5R0 and R ,  = 
3.75R0 are nearly identical, indicating that beyond a diameter of 2.5R0, the radius of 
the coating has little effect on the results. This is to be expected since the influence 
of the wall motion on the cavity must die out with distance from the cavity. 
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FIGURE 14. Contours of zJR, = Zo/R, on a plot of M *  versus K*.  T* = 0.0025, R, = 2.5R,: 
zo = l . l R o  (-), 2, = l.5Rn (.....), Z, = 2.0R0 (------). 

M *  

FIGURE 15. Collapse height, z,, versus M* with K* = 2.0, T* = 0.0025 and Z, = 1.5Ro. 
R,  = 1.25R0 (-), R,  = 2.5R0 ( . . . . . I ,  R ,  = 3.75R0 (-----). 

4.5. Comparison with published experimental data 
The only extensive set of experimental data on the behaviour of cavities near 
compliant walls is that published by Shima et al. (1989). Unfortunately, there are 
several differences between the present calculations and the conditions of these 
experiments that prevent a valid comparison. Probably the most important 
difference is that in the experiments the cavity is spark generated and so grows and 
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FIGURE 16. Comparison of the experimental data from Shima et al. (1989) (-), which is for a 
cavity that expands and then collapses, with results from the present calculations (.....), which are 
for a cavity which collapses from rest. In the experiments the coating has an unknown bending 
stiffness while in the calculations the bending stiffness is zero. Plot of z, versus M* with K* = 0.088, 
T* = 0, R ,  = 2.5R0. 

then collapses, while in the calculations the cavity collapses from rest when it is at 
its maximum size. As is explained in $3, this restriction on the numerical model is 
necessitated by the method used to  start the calculation. The difference in the results 
between the two cases can be quite important. For example, if the cavity collapses 
from rest next to a rigid wall with 2, = 1.5R0, we find z, = 1.026R0, while if the cavity 
grows and then collapses from the same initial height and an initial radius of 10 % of 
its maximum size, we find z, = 0.798R0. Another difference between the experiments 
and the present calculations concerns the construction of the coating. The coating 
used by Shima et al. consisted of an untensioned layer of rubber backed by a layer 
of foam. The rubber layer had finite thickness and so a finite bending stiffness, while 
in the numerical model there was no bending stiffness. From Shinia et al. (1989), the 
properties of this outer layer are E = 95.6 kPa and a maximum thickness h = 5.0 mm. 
Thus, if we assume that the material is incompressible, the maximum bending 
stiffness (R,,,) is 

R,,, = AEhL,, = 0.001 Nt m 

(Landau & Lifshitz 1986). To include bending effects in the membrane equation one 
would have to add a term BV47 (where V is the gradient operator for the membrane 
in cylindrical coordinates) to  the membrane equation (4). After non-dimensionalizing 
7 and r with R, and dividing by AP, the dimensionless bending stiffness can be found 
which is directly comparable to  M*, K* and T*: 

Thus, if the value of E given in Shima et al. (1989) is correct, one might guess that 
this relatively small bending stiffness would not have a large effect. Unfortunately, 
the value of E is probably not reliable since i t  appears to have been measured 
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statically and the modulus of rubber-like materials is highly frequency dependent 
(Hunston, Yu & Bullman 1984). The static value is likely to be much too low. Thus, 
it is not possible to accurately assess the magnitude of the neglected bending stiffness 
in the present model. Another difference between the calculations and the 
experiments is that the coating in the experiments was surrounded by a free surface 
rather than a rigid wall as in the calculations. In the experiments R,/Ro = 5.7. 
Owing to the instabilities in the calculation procedure, it was not possible to perform 
calculations with low values of M* and this large value of R,. However, given the 
results in the previous section showing that increases in the coating radius over 2.5R0 
do not effect the results very much, it is not expected that the free surface or the 
larger coating radius in the experiments would cause a major change in the results. 

In spite of these problems, a comparison of the present numerical results with the 
experimental results of Shima et al. (1989) is presented in figure 16. The experimental 
data is from their figure 10 and is a plot of z, versus M*. (Owing to differing 
definitions, the dimensionless mass and spring constants used by Shima et al. must 
be divided by 7c and xRk/Ri to obtain M* and K*, respectively). In the present 
calculation, R, = 2.5Ro, T* = 0 and K* = 0.088 (a value taken from their paper). 
Note that the shape of the curves is about the same. but that the calculations are 
shifted to higher M* and zc/R,. The shift in zJRo in figure 16 is about equal to the 
shift in z, mentioned above when comparing the cases of cavity growth followed by 
collapse and cavity collapse only for a rigid wall. The magnitude of the shift in M* 
is about 1.0. 

5.  Conclusion 
A numerical method for the computation of the collapse of a cavity adjacent to a 

compliant wall has been presented. When thc wall is rigid, the collapse is 
characterized by the formation of a re-entrant jet that is directed toward the wall. 
When the wall is compliant, it is possible to  create a spherical collapse or to direct 
the re-entrant jet away from the wall for a fairly wide range of wall parameters. This 
drastic change in behaviour of the cavity occurs when the displacements in the 
coating are about 15% of the initial cavity radius and when the total energy 
transferred to the coating from the flow is about 10% of the total flow-coating 
energy. When the parameters are such that the collapse is spherical, the value of 
T,/T, (the ratio of the timescale for the collapse of a cavity in an infinite fluid to the 
spring-mass timescale for the membrane) is found to vary widely, indicating that 
this ratio does not dominate the physics of the interaction. In  the range of coating 
parameters studied herein, the interaction is most sensitive to M* ( = m/(pR,), where 
m is the mass per unit area of the membrane, p is the density of the fluid and R, is 
the initial radius of the cavity). 
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